
TCPDUMP(8) TCPDUMP(8)

NAME
tcpdump − dump traffic on a network

SYNOPSIS
tcpdump [−adeflnNOpqStvx] [−c count] [−F file]

[−i interface] [−r file] [−s snaplen]
[−T type] [−w file] [expression]

DESCRIPTION
Tcpdump prints out the headers of packets on a network interface that match the boolean expression.

Under SunOS with nit or bpf: To run tcpdump you must have read access to /dev/nit or /dev/bpf*. Under
Solaris with dlpi: You must have read access to the network pseudo device, e.g. /dev/le. Under HP-UX
with dlpi: You must be root or it must be installed setuid to root. Under IRIX with snoop: You must be
root or it must be installed setuid to root. Under Linux: You must be root or it must be installed setuid to
root. Under Ultrix and Digital UNIX: Once the super-user has enabled promiscuous-mode operation
using pfconfig(8), any user may run tcpdump. Under BSD: You must have read access to /dev/bpf*.

OPTIONS
−a Attempt to convert network and broadcast addresses to names.

−c Exit after receiving count packets.

−d Dump the compiled packet-matching code in a human readable form to standard output and stop.

−dd Dump packet-matching code as a C program fragment.

−ddd Dump packet-matching code as decimal numbers (preceded with a count).

−e Print the link-level header on each dump line.

−f Print ‘foreign’ internet addresses numerically rather than symbolically (this option is intended to
get around serious brain damage in Sun’s yp server — usually it hangs forever translating non-
local internet numbers).

−F Use file as input for the filter expression. An additional expression given on the command line is
ignored.

−i Listen on interface. If unspecified, tcpdump searches the system interface list for the lowest num-
bered, configured up interface (excluding loopback). Ties are broken by choosing the earliest
match.

−l Make stdout line buffered. Useful if you want to see the data while capturing it. E.g.,
‘‘tcpdump −l | tee dat’’ or ‘‘tcpdump −l > dat & tail −f dat’’.

−n Don’t convert addresses (i.e., host addresses, port numbers, etc.) to names.

−N Don’t print domain name qualification of host names. E.g., if you give this flag then tcpdump will
print ‘‘nic’’ instead of ‘‘nic.ddn.mil’’.

−O Do not run the packet-matching code optimizer. This is useful only if you suspect a bug in the
optimizer.

−p Don’t put the interface into promiscuous mode. Note that the interface might be in promiscuous
mode for some other reason; hence, ‘-p’ cannot be used as an abbreviation for ‘ether host {local-
hw-addr} or ether broadcast’.

−q Quick (quiet?) output. Print less protocol information so output lines are shorter.

−r Read packets from file (which was created with the -w option). Standard input is used if file is
‘‘-’’.

−s Snarf snaplen bytes of data from each packet rather than the default of 68 (with SunOS’s NIT, the
minimum is actually 96). 68 bytes is adequate for IP, ICMP, TCP and UDP but may truncate pro-
tocol information from name server and NFS packets (see below). Packets truncated because of a
limited snapshot are indicated in the output with ‘‘[|proto]’’, where proto is the name of the

30 June 1997 1

TCPDUMP(8) TCPDUMP(8)

protocol level at which the truncation has occurred. Note that taking larger snapshots both
increases the amount of time it takes to process packets and, effectively, decreases the amount of
packet buffering. This may cause packets to be lost. You should limit snaplen to the smallest
number that will capture the protocol information you’re interested in.

−T Force packets selected by "expression" to be interpreted the specified type. Currently known types
are rpc (Remote Procedure Call), rtp (Real-Time Applications protocol), rtcp (Real-Time Appli-
cations control protocol), vat (Visual Audio Tool), and wb (distributed White Board).

−S Print absolute, rather than relative, TCP sequence numbers.

−t Don’t print a timestamp on each dump line.

−tt Print an unformatted timestamp on each dump line.

−v (Slightly more) verbose output. For example, the time to live and type of service information in an
IP packet is printed.

−vv Even more verbose output. For example, additional fields are printed from NFS reply packets.

−w Write the raw packets to file rather than parsing and printing them out. They can later be printed
with the −r option. Standard output is used if file is ‘‘-’’.

−x Print each packet (minus its link level header) in hex. The smaller of the entire packet or snaplen
bytes will be printed.

expression
selects which packets will be dumped. If no expression is given, all packets on the net will be
dumped. Otherwise, only packets for which expression is ‘true’ will be dumped.

The expression consists of one or more primitives. Primitives usually consist of an id (name or
number) preceded by one or more qualifiers. There are three different kinds of qualifier:

type qualifiers say what kind of thing the id name or number refers to. Possible types are host,
net and port. E.g., ‘host foo’, ‘net 128.3’, ‘port 20’. If there is no type qualifier, host is
assumed.

dir qualifiers specify a particular transfer direction to and/or from id. Possible directions are
src, dst, src or dst and src and dst. E.g., ‘src foo’, ‘dst net 128.3’, ‘src or dst port ftp-
data’. If there is no dir qualifier, src or dst is assumed. For ‘null’ link layers (i.e. point
to point protocols such as slip) the inbound and outbound qualifiers can be used to spec-
ify a desired direction.

proto qualifiers restrict the match to a particular protocol. Possible protos are: ether, fddi, ip,
arp, rarp, decnet, lat, sca, moprc, mopdl, tcp and udp. E.g., ‘ether src foo’, ‘arp net
128.3’, ‘tcp port 21’. If there is no proto qualifier, all protocols consistent with the type
are assumed. E.g., ‘src foo’ means ‘(ip or arp or rarp) src foo’ (except the latter is not
legal syntax), ‘net bar’ means ‘(ip or arp or rarp) net bar’ and ‘port 53’ means ‘(tcp or
udp) port 53’.

[‘fddi’ is actually an alias for ‘ether’; the parser treats them identically as meaning ‘‘the data link
level used on the specified network interface.’’ FDDI headers contain Ethernet-like source and
destination addresses, and often contain Ethernet-like packet types, so you can filter on these
FDDI fields just as with the analogous Ethernet fields. FDDI headers also contain other fields, but
you cannot name them explicitly in a filter expression.]

In addition to the above, there are some special ‘primitive’ keywords that don’t follow the pattern:
gateway, broadcast, less, greater and arithmetic expressions. All of these are described below.

More complex filter expressions are built up by using the words and, or and not to combine prim-
itives. E.g., ‘host foo and not port ftp and not port ftp-data’. To sav e typing, identical qualifier
lists can be omitted. E.g., ‘tcp dst port ftp or ftp-data or domain’ is exactly the same as ‘tcp dst
port ftp or tcp dst port ftp-data or tcp dst port domain’.

Allowable primitives are:

30 June 1997 2

TCPDUMP(8) TCPDUMP(8)

dst host host
True if the IP destination field of the packet is host, which may be either an address or a
name.

src host host
True if the IP source field of the packet is host.

host host
True if either the IP source or destination of the packet is host. Any of the above host
expressions can be prepended with the keywords, ip, arp, or rarp as in:

ip host host
which is equivalent to:

ether proto \ip and host host
If host is a name with multiple IP addresses, each address will be checked for a match.

ether dst ehost
True if the ethernet destination address is ehost. Ehost may be either a name from
/etc/ethers or a number (see ethers(3N) for numeric format).

ether src ehost
True if the ethernet source address is ehost.

ether host ehost
True if either the ethernet source or destination address is ehost.

gateway host
True if the packet used host as a gateway. I.e., the ethernet source or destination address
was host but neither the IP source nor the IP destination was host. Host must be a name
and must be found in both /etc/hosts and /etc/ethers. (An equivalent expression is

ether host ehost and not host host
which can be used with either names or numbers for host / ehost.)

dst net net
True if the IP destination address of the packet has a network number of net. Net may be
either a name from /etc/networks or a network number (see networks(4) for details).

src net net
True if the IP source address of the packet has a network number of net.

net net True if either the IP source or destination address of the packet has a network number of
net.

net net mask mask
True if the IP address matches net with the specific netmask. May be qualified with src
or dst.

net net/len
True if the IP address matches net a netmask len bits wide. May be qualified with src or
dst.

dst port port
True if the packet is ip/tcp or ip/udp and has a destination port value of port. The port
can be a number or a name used in /etc/services (see tcp(4P) and udp(4P)). If a name is
used, both the port number and protocol are checked. If a number or ambiguous name is
used, only the port number is checked (e.g., dst port 513 will print both tcp/login traffic
and udp/who traffic, and port domain will print both tcp/domain and udp/domain traffic).

src port port
True if the packet has a source port value of port.

port port
True if either the source or destination port of the packet is port. Any of the above port
expressions can be prepended with the keywords, tcp or udp, as in:

30 June 1997 3

TCPDUMP(8) TCPDUMP(8)

tcp src port port
which matches only tcp packets whose source port is port.

less length
True if the packet has a length less than or equal to length. This is equivalent to:

len <= length.

greater length
True if the packet has a length greater than or equal to length. This is equivalent to:

len >= length.

ip proto protocol
True if the packet is an ip packet (see ip(4P)) of protocol type protocol. Protocol can be a
number or one of the names icmp, igrp, udp, nd, or tcp. Note that the identifiers tcp, udp,
and icmp are also keywords and must be escaped via backslash (\), which is \\ in the C-
shell.

ether broadcast
True if the packet is an ethernet broadcast packet. The ether keyword is optional.

ip broadcast
True if the packet is an IP broadcast packet. It checks for both the all-zeroes and all-ones
broadcast conventions, and looks up the local subnet mask.

ether multicast
True if the packet is an ethernet multicast packet. The ether keyword is optional. This is
shorthand for ‘ether[0] & 1 != 0’.

ip multicast
True if the packet is an IP multicast packet.

ether proto protocol
True if the packet is of ether type protocol. Protocol can be a number or a name like ip,
arp, or rarp. Note these identifiers are also keywords and must be escaped via backslash
(\). [In the case of FDDI (e.g., ‘fddi protocol arp’), the protocol identification comes
from the 802.2 Logical Link Control (LLC) header, which is usually layered on top of the
FDDI header. Tcpdump assumes, when filtering on the protocol identifier, that all FDDI
packets include an LLC header, and that the LLC header is in so-called SNAP format.]

decnet src host
True if the DECNET source address is host, which may be an address of the form
‘‘10.123’’, or a DECNET host name. [DECNET host name support is only available on
Ultrix systems that are configured to run DECNET.]

decnet dst host
True if the DECNET destination address is host.

decnet host host
True if either the DECNET source or destination address is host.

ip, arp, rarp, decnet
Abbreviations for:

ether proto p
where p is one of the above protocols.

lat, moprc, mopdl
Abbreviations for:

ether proto p
where p is one of the above protocols. Note that tcpdump does not currently know how to
parse these protocols.

30 June 1997 4

TCPDUMP(8) TCPDUMP(8)

tcp, udp, icmp
Abbreviations for:

ip proto p
where p is one of the above protocols.

expr relop expr
True if the relation holds, where relop is one of >, <, >=, <=, =, !=, and expr is an arith-
metic expression composed of integer constants (expressed in standard C syntax), the
normal binary operators [+, -, *, /, &, |], a length operator, and special packet data acces-
sors. To access data inside the packet, use the following syntax:

proto [expr : size]
Proto is one of ether, fddi, ip, arp, rarp, tcp, udp, or icmp, and indicates the protocol
layer for the index operation. The byte offset, relative to the indicated protocol layer, is
given by expr. Size is optional and indicates the number of bytes in the field of interest; it
can be either one, two, or four, and defaults to one. The length operator, indicated by the
keyword len, giv es the length of the packet.

For example, ‘ether[0] & 1 != 0’ catches all multicast traffic. The expression ‘ip[0] &
0xf != 5’ catches all IP packets with options. The expression ‘ip[6:2] & 0x1fff = 0’
catches only unfragmented datagrams and frag zero of fragmented datagrams. This
check is implicitly applied to the tcp and udp index operations. For instance, tcp[0]
always means the first byte of the TCP header, and never means the first byte of an inter-
vening fragment.

Primitives may be combined using:

A parenthesized group of primitives and operators (parentheses are special to the Shell
and must be escaped).

Negation (‘!’ or ‘not’).

Concatenation (‘&&’ or ‘and’).

Alternation (‘||’ or ‘or’).

Negation has highest precedence. Alternation and concatenation have equal precedence and asso-
ciate left to right. Note that explicit and tokens, not juxtaposition, are now required for concatena-
tion.

If an identifier is given without a keyword, the most recent keyword is assumed. For example,
not host vs and ace

is short for
not host vs and host ace

which should not be confused with
not (host vs or ace)

Expression arguments can be passed to tcpdump as either a single argument or as multiple argu-
ments, whichever is more convenient. Generally, if the expression contains Shell metacharacters,
it is easier to pass it as a single, quoted argument. Multiple arguments are concatenated with
spaces before being parsed.

EXAMPLES
To print all packets arriving at or departing from sundown:

tcpdump host sundown

To print traffic between helios and either hot or ace:
tcpdump host helios and \(hot or ace \)

To print all IP packets between ace and any host except helios:
tcpdump ip host ace and not helios

To print all traffic between local hosts and hosts at Berkeley:

30 June 1997 5

TCPDUMP(8) TCPDUMP(8)

tcpdump net ucb-ether

To print all ftp traffic through internet gateway snup: (note that the expression is quoted to prevent the shell
from (mis-)interpreting the parentheses):

tcpdump ’gateway snup and (port ftp or ftp-data)’

To print traffic neither sourced from nor destined for local hosts (if you gateway to one other net, this stuff
should never make it onto your local net).

tcpdump ip and not net localnet

To print the start and end packets (the SYN and FIN packets) of each TCP conversation that involves a non-
local host.

tcpdump ’tcp[13] & 3 != 0 and not src and dst net localnet’

To print IP packets longer than 576 bytes sent through gateway snup:
tcpdump ’gateway snup and ip[2:2] > 576’

To print IP broadcast or multicast packets that were not sent via ethernet broadcast or multicast:
tcpdump ’ether[0] & 1 = 0 and ip[16] >= 224’

To print all ICMP packets that are not echo requests/replies (i.e., not ping packets):
tcpdump ’icmp[0] != 8 and icmp[0] != 0"

OUTPUT FORMAT
The output of tcpdump is protocol dependent. The following gives a brief description and examples of
most of the formats.

Link Level Headers

If the ’-e’ option is given, the link level header is printed out. On ethernets, the source and destination
addresses, protocol, and packet length are printed.

On FDDI networks, the ’-e’ option causes tcpdump to print the ‘frame control’ field, the source and desti-
nation addresses, and the packet length. (The ‘frame control’ field governs the interpretation of the rest of
the packet. Normal packets (such as those containing IP datagrams) are ‘async’ packets, with a priority
value between 0 and 7; for example, ‘async4’. Such packets are assumed to contain an 802.2 Logical Link
Control (LLC) packet; the LLC header is printed if it is not an ISO datagram or a so-called SNAP packet.

(N.B.: The following description assumes familiarity with the SLIP compression algorithm described in
RFC-1144.)

On SLIP links, a direction indicator (‘‘I’’ for inbound, ‘‘O’’ for outbound), packet type, and compression
information are printed out. The packet type is printed first. The three types are ip, utcp, and ctcp. No fur-
ther link information is printed for ip packets. For TCP packets, the connection identifier is printed follow-
ing the type. If the packet is compressed, its encoded header is printed out. The special cases are printed
out as *S+n and *SA+n, where n is the amount by which the sequence number (or sequence number and
ack) has changed. If it is not a special case, zero or more changes are printed. A change is indicated by U
(urgent pointer), W (window), A (ack), S (sequence number), and I (packet ID), followed by a delta (+n or
-n), or a new value (=n). Finally, the amount of data in the packet and compressed header length are
printed.

For example, the following line shows an outbound compressed TCP packet, with an implicit connection
identifier; the ack has changed by 6, the sequence number by 49, and the packet ID by 6; there are 3 bytes
of data and 6 bytes of compressed header:

O ctcp * A+6 S+49 I+6 3 (6)

ARP/RARP Packets

Arp/rarp output shows the type of request and its arguments. The format is intended to be self explanatory.
Here is a short sample taken from the start of an ‘rlogin’ from host rtsg to host csam:

arp who-has csam tell rtsg

30 June 1997 6

TCPDUMP(8) TCPDUMP(8)

arp reply csam is-at CSAM

The first line says that rtsg sent an arp packet asking for the ethernet address of internet host csam. Csam
replies with its ethernet address (in this example, ethernet addresses are in caps and internet addresses in
lower case).

This would look less redundant if we had done tcpdump −n:

arp who-has 128.3.254.6 tell 128.3.254.68
arp reply 128.3.254.6 is-at 02:07:01:00:01:c4

If we had done tcpdump −e, the fact that the first packet is broadcast and the second is point-to-point
would be visible:

RTSG Broadcast 0806 64: arp who-has csam tell rtsg
CSAM RTSG 0806 64: arp reply csam is-at CSAM

For the first packet this says the ethernet source address is RTSG, the destination is the ethernet broadcast
address, the type field contained hex 0806 (type ETHER_ARP) and the total length was 64 bytes.

TCP Packets

(N.B.:The following description assumes familiarity with the TCP protocol described in RFC-793. If you
are not familiar with the protocol, neither this description nor tcpdump will be of much use to you.)

The general format of a tcp protocol line is:

src > dst: flags data-seqno ack window urgent options

Src and dst are the source and destination IP addresses and ports. Flags are some combination of S (SYN),
F (FIN), P (PUSH) or R (RST) or a single ‘.’ (no flags). Data-seqno describes the portion of sequence
space covered by the data in this packet (see example below). Ack is sequence number of the next data
expected the other direction on this connection. Window is the number of bytes of receive buffer space
available the other direction on this connection. Urg indicates there is ‘urgent’ data in the packet. Options
are tcp options enclosed in angle brackets (e.g., <mss 1024>).

Src, dst and flags are always present. The other fields depend on the contents of the packet’s tcp protocol
header and are output only if appropriate.

Here is the opening portion of an rlogin from host rtsg to host csam.

rtsg.1023 > csam.login: S 768512:768512(0) win 4096 <mss 1024>

csam.login > rtsg.1023: S 947648:947648(0) ack 768513 win 4096 <mss 1024>

rtsg.1023 > csam.login: . ack 1 win 4096

rtsg.1023 > csam.login: P 1:2(1) ack 1 win 4096

csam.login > rtsg.1023: . ack 2 win 4096

rtsg.1023 > csam.login: P 2:21(19) ack 1 win 4096

csam.login > rtsg.1023: P 1:2(1) ack 21 win 4077

csam.login > rtsg.1023: P 2:3(1) ack 21 win 4077 urg 1

csam.login > rtsg.1023: P 3:4(1) ack 21 win 4077 urg 1

The first line says that tcp port 1023 on rtsg sent a packet to port login on csam. The S indicates that the
SYN flag was set. The packet sequence number was 768512 and it contained no data. (The notation is
‘first:last(nbytes)’ which means ‘sequence numbers first up to but not including last which is nbytes bytes
of user data’.) There was no piggy-backed ack, the available receive window was 4096 bytes and there was
a max-segment-size option requesting an mss of 1024 bytes.

Csam replies with a similar packet except it includes a piggy-backed ack for rtsg’s SYN. Rtsg then acks
csam’s SYN. The ‘.’ means no flags were set. The packet contained no data so there is no data sequence
number. Note that the ack sequence number is a small integer (1). The first time tcpdump sees a tcp ‘con-
versation’, it prints the sequence number from the packet. On subsequent packets of the conversation, the
difference between the current packet’s sequence number and this initial sequence number is printed. This

30 June 1997 7

TCPDUMP(8) TCPDUMP(8)

means that sequence numbers after the first can be interpreted as relative byte positions in the conversa-
tion’s data stream (with the first data byte each direction being ‘1’). ‘-S’ will override this feature, causing
the original sequence numbers to be output.

On the 6th line, rtsg sends csam 19 bytes of data (bytes 2 through 20 in the rtsg → csam side of the conver-
sation). The PUSH flag is set in the packet. On the 7th line, csam says it’s received data sent by rtsg up to
but not including byte 21. Most of this data is apparently sitting in the socket buffer since csam’s receive
window has gotten 19 bytes smaller. Csam also sends one byte of data to rtsg in this packet. On the 8th
and 9th lines, csam sends two bytes of urgent, pushed data to rtsg.

If the snapshot was small enough that tcpdump didn’t capture the full TCP header, it interprets as much of
the header as it can and then reports ‘‘[|tcp]’’ to indicate the remainder could not be interpreted. If the
header contains a bogus option (one with a length that’s either too small or beyond the end of the header),
tcpdump reports it as ‘‘[bad opt]’’ and does not interpret any further options (since it’s impossible to tell
where they start). If the header length indicates options are present but the IP datagram length is not long
enough for the options to actually be there, tcpdump reports it as ‘‘[bad hdr length]’’.

UDP Packets

UDP format is illustrated by this rwho packet:

actinide.who > broadcast.who: udp 84

This says that port who on host actinide sent a udp datagram to port who on host broadcast, the Internet
broadcast address. The packet contained 84 bytes of user data.

Some UDP services are recognized (from the source or destination port number) and the higher level proto-
col information printed. In particular, Domain Name service requests (RFC-1034/1035) and Sun RPC calls
(RFC-1050) to NFS.

UDP Name Server Requests

(N.B.:The following description assumes familiarity with the Domain Service protocol described in
RFC-1035. If you are not familiar with the protocol, the following description will appear to be written in
greek.)

Name server requests are formatted as

src > dst: id op? flags qtype qclass name (len)

h2opolo.1538 > helios.domain: 3+ A? ucbvax.berkeley.edu. (37)

Host h2opolo asked the domain server on helios for an address record (qtype=A) associated with the name
ucbvax.berkeley.edu. The query id was ‘3’. The ‘+’ indicates the recursion desired flag was set. The query
length was 37 bytes, not including the UDP and IP protocol headers. The query operation was the normal
one, Query, so the op field was omitted. If the op had been anything else, it would have been printed
between the ‘3’ and the ‘+’. Similarly, the qclass was the normal one, C_IN, and omitted. Any other qclass
would have been printed immediately after the ‘A’.

A few anomalies are checked and may result in extra fields enclosed in square brackets: If a query contains
an answer, name server or authority section, ancount, nscount, or arcount are printed as ‘[na]’, ‘[nn]’ or
‘[nau]’ where n is the appropriate count. If any of the response bits are set (AA, RA or rcode) or any of the
‘must be zero’ bits are set in bytes two and three, ‘[b2&3=x]’ is printed, where x is the hex value of header
bytes two and three.

UDP Name Server Responses

Name server responses are formatted as

src > dst: id op rcode flags a/n/au type class data (len)

30 June 1997 8

TCPDUMP(8) TCPDUMP(8)

helios.domain > h2opolo.1538: 3 3/3/7 A 128.32.137.3 (273)
helios.domain > h2opolo.1537: 2 NXDomain* 0/1/0 (97)

In the first example, helios responds to query id 3 from h2opolo with 3 answer records, 3 name server
records and 7 authority records. The first answer record is type A (address) and its data is internet address
128.32.137.3. The total size of the response was 273 bytes, excluding UDP and IP headers. The op
(Query) and response code (NoError) were omitted, as was the class (C_IN) of the A record.

In the second example, helios responds to query 2 with a response code of non-existent domain (NXDo-
main) with no answers, one name server and no authority records. The ‘*’ indicates that the authoritative
answer bit was set. Since there were no answers, no type, class or data were printed.

Other flag characters that might appear are ‘−’ (recursion available, RA, not set) and ‘|’ (truncated message,
TC, set). If the ‘question’ section doesn’t contain exactly one entry, ‘[nq]’ is printed.

Note that name server requests and responses tend to be large and the default snaplen of 68 bytes may not
capture enough of the packet to print. Use the −s flag to increase the snaplen if you need to seriously inves-
tigate name server traffic. ‘−s 128’ has worked well for me.

NFS Requests and Replies

Sun NFS (Network File System) requests and replies are printed as:

src.xid > dst.nfs: len op args
src.nfs > dst.xid: reply stat len op results

sushi.6709 > wrl.nfs: 112 readlink fh 21,24/10.73165
wrl.nfs > sushi.6709: reply ok 40 readlink "../var"
sushi.201b > wrl.nfs:

144 lookup fh 9,74/4096.6878 "xcolors"
wrl.nfs > sushi.201b:

reply ok 128 lookup fh 9,74/4134.3150

In the first line, host sushi sends a transaction with id 6709 to wrl (note that the number following the src
host is a transaction id, not the source port). The request was 112 bytes, excluding the UDP and IP headers.
The operation was a readlink (read symbolic link) on file handle (fh) 21,24/10.731657119. (If one is lucky,
as in this case, the file handle can be interpreted as a major,minor device number pair, followed by the inode
number and generation number.) Wrl replies ‘ok’ with the contents of the link.

In the third line, sushi asks wrl to lookup the name ‘xcolors’ in directory file 9,74/4096.6878. Note that the
data printed depends on the operation type. The format is intended to be self explanatory if read in con-
junction with an NFS protocol spec.

If the −v (verbose) flag is given, additional information is printed. For example:

sushi.1372a > wrl.nfs:
148 read fh 21,11/12.195 8192 bytes @ 24576

wrl.nfs > sushi.1372a:
reply ok 1472 read REG 100664 ids 417/0 sz 29388

(−v also prints the IP header TTL, ID, and fragmentation fields, which have been omitted from this exam-
ple.) In the first line, sushi asks wrl to read 8192 bytes from file 21,11/12.195, at byte offset 24576. Wrl
replies ‘ok’; the packet shown on the second line is the first fragment of the reply, and hence is only 1472
bytes long (the other bytes will follow in subsequent fragments, but these fragments do not have NFS or
ev en UDP headers and so might not be printed, depending on the filter expression used). Because the −v
flag is given, some of the file attributes (which are returned in addition to the file data) are printed: the file

30 June 1997 9

TCPDUMP(8) TCPDUMP(8)

type (‘‘REG’’, for regular file), the file mode (in octal), the uid and gid, and the file size.

If the −v flag is given more than once, even more details are printed.

Note that NFS requests are very large and much of the detail won’t be printed unless snaplen is increased.
Try using ‘−s 192’ to watch NFS traffic.

NFS reply packets do not explicitly identify the RPC operation. Instead, tcpdump keeps track of ‘‘recent’’
requests, and matches them to the replies using the transaction ID. If a reply does not closely follow the
corresponding request, it might not be parsable.

KIP Appletalk (DDP in UDP)

Appletalk DDP packets encapsulated in UDP datagrams are de-encapsulated and dumped as DDP packets
(i.e., all the UDP header information is discarded). The file /etc/atalk.names is used to translate appletalk
net and node numbers to names. Lines in this file have the form

number name

1.254 ether
16.1 icsd-net
1.254.110 ace

The first two lines give the names of appletalk networks. The third line gives the name of a particular host
(a host is distinguished from a net by the 3rd octet in the number − a net number must have two octets and a
host number must have three octets.) The number and name should be separated by whitespace (blanks or
tabs). The /etc/atalk.names file may contain blank lines or comment lines (lines starting with a ‘#’).

Appletalk addresses are printed in the form

net.host.port

144.1.209.2 > icsd-net.112.220
office.2 > icsd-net.112.220
jssmag.149.235 > icsd-net.2

(If the /etc/atalk.names doesn’t exist or doesn’t contain an entry for some appletalk host/net number,
addresses are printed in numeric form.) In the first example, NBP (DDP port 2) on net 144.1 node 209 is
sending to whatever is listening on port 220 of net icsd node 112. The second line is the same except the
full name of the source node is known (‘office’). The third line is a send from port 235 on net jssmag node
149 to broadcast on the icsd-net NBP port (note that the broadcast address (255) is indicated by a net name
with no host number − for this reason it’s a good idea to keep node names and net names distinct in
/etc/atalk.names).

NBP (name binding protocol) and ATP (Appletalk transaction protocol) packets have their contents inter-
preted. Other protocols just dump the protocol name (or number if no name is registered for the protocol)
and packet size.

NBP packets are formatted like the following examples:

icsd-net.112.220 > jssmag.2: nbp-lkup 190: "=:LaserWriter@*"

jssmag.209.2 > icsd-net.112.220: nbp-reply 190: "RM1140:LaserWriter@*" 250

techpit.2 > icsd-net.112.220: nbp-reply 190: "techpit:LaserWriter@*" 186

The first line is a name lookup request for laserwriters sent by net icsd host 112 and broadcast on net jss-
mag. The nbp id for the lookup is 190. The second line shows a reply for this request (note that it has the
same id) from host jssmag.209 saying that it has a laserwriter resource named "RM1140" registered on port
250. The third line is another reply to the same request saying host techpit has laserwriter "techpit" regis-
tered on port 186.

ATP packet formatting is demonstrated by the following example:

30 June 1997 10

TCPDUMP(8) TCPDUMP(8)

jssmag.209.165 > helios.132: atp-req 12266<0-7> 0xae030001

helios.132 > jssmag.209.165: atp-resp 12266:0 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:1 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:2 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:4 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:6 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp*12266:7 (512) 0xae040000

jssmag.209.165 > helios.132: atp-req 12266<3,5> 0xae030001

helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000

helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000

jssmag.209.165 > helios.132: atp-rel 12266<0-7> 0xae030001

jssmag.209.133 > helios.132: atp-req* 12267<0-7> 0xae030002

Jssmag.209 initiates transaction id 12266 with host helios by requesting up to 8 packets (the ‘<0-7>’). The
hex number at the end of the line is the value of the ‘userdata’ field in the request.

Helios responds with 8 512-byte packets. The ‘:digit’ following the transaction id gives the packet
sequence number in the transaction and the number in parens is the amount of data in the packet, excluding
the atp header. The ‘*’ on packet 7 indicates that the EOM bit was set.

Jssmag.209 then requests that packets 3 & 5 be retransmitted. Helios resends them then jssmag.209
releases the transaction. Finally, jssmag.209 initiates the next request. The ‘*’ on the request indicates that
XO (‘exactly once’) was not set.

IP Fragmentation

Fragmented Internet datagrams are printed as

(frag id:size@offset+)
(frag id:size@offset)

(The first form indicates there are more fragments. The second indicates this is the last fragment.)

Id is the fragment id. Size is the fragment size (in bytes) excluding the IP header. Offset is this fragment’s
offset (in bytes) in the original datagram.

The fragment information is output for each fragment. The first fragment contains the higher level protocol
header and the frag info is printed after the protocol info. Fragments after the first contain no higher level
protocol header and the frag info is printed after the source and destination addresses. For example, here is
part of an ftp from arizona.edu to lbl-rtsg.arpa over a CSNET connection that doesn’t appear to handle 576
byte datagrams:

arizona.ftp-data > rtsg.1170: . 1024:1332(308) ack 1 win 4096 (frag 595a:328@0+)

arizona > rtsg: (frag 595a:204@328)

rtsg.1170 > arizona.ftp-data: . ack 1536 win 2560

There are a couple of things to note here: First, addresses in the 2nd line don’t include port numbers. This
is because the TCP protocol information is all in the first fragment and we have no idea what the port or
sequence numbers are when we print the later fragments. Second, the tcp sequence information in the first
line is printed as if there were 308 bytes of user data when, in fact, there are 512 bytes (308 in the first frag
and 204 in the second). If you are looking for holes in the sequence space or trying to match up acks with
packets, this can fool you.

A packet with the IP don’t fra gment flag is marked with a trailing (DF).

Timestamps

30 June 1997 11

TCPDUMP(8) TCPDUMP(8)

By default, all output lines are preceded by a timestamp. The timestamp is the current clock time in the
form

hh:mm:ss.frac
and is as accurate as the kernel’s clock. The timestamp reflects the time the kernel first saw the packet. No
attempt is made to account for the time lag between when the ethernet interface removed the packet from
the wire and when the kernel serviced the ‘new packet’ interrupt.

SEE ALSO
traffic(1C), nit(4P), bpf(4), pcap(3)

AUTHORS
Van Jacobson, Craig Leres and Steven McCanne, all of the Lawrence Berkeley National Laboratory, Uni-
versity of California, Berkeley, CA.

The current version is available via anonymous ftp:

ftp://ftp.ee.lbl.gov/tcpdump.tar.Z

BUGS
Please send bug reports to tcpdump@ee.lbl.gov.

NIT doesn’t let you watch your own outbound traffic, BPF will. We recommend that you use the latter.

Some attempt should be made to reassemble IP fragments or, at least to compute the right length for the
higher level protocol.

Name server inverse queries are not dumped correctly: The (empty) question section is printed rather than
real query in the answer section. Some believe that inverse queries are themselves a bug and prefer to fix
the program generating them rather than tcpdump.

Apple Ethertalk DDP packets could be dumped as easily as KIP DDP packets but aren’t. Even if we were
inclined to do anything to promote the use of Ethertalk (we aren’t), LBL doesn’t allow Ethertalk on any of
its networks so we’d would have no way of testing this code.

A packet trace that crosses a daylight savings time change will give skewed time stamps (the time change is
ignored).

Filters expressions that manipulate FDDI headers assume that all FDDI packets are encapsulated Ethernet
packets. This is true for IP, ARP, and DECNET Phase IV, but is not true for protocols such as ISO CLNS.
Therefore, the filter may inadvertently accept certain packets that do not properly match the filter expres-
sion.

30 June 1997 12

